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Themes
• Goals for robust and stochastic optimization can 

align
• Different approaches may lead to the same 

outcomes
• Some cases create apparent paradoxes between the 

approaches  (that can be resolved with a consistent 
framework)

• Methods/results from each approach may useful
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Outline
• Traditional views
• Overall framework
• Consistent interpretation
• Paradoxes, pitfalls, and resolutions
• Converging methods and results
• Conclusions and revisions
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Traditional Views
Stochastic optimization 

(SO)

minx2 X EP[f(x,ξ)]

where P is a (known) 
prob. measure on ξ.

Issues: What are f, P? 

Robust optimization 
(RO)

minx2 X [maxξ2Ξ g(x,ξ)]
where Ξ is the set of 

possible ξ.

Issues: What are g, Ξ ? 
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Misinterpretations

• Objective functions:
– f and g are the same in each model

• Probability distribution:
– P, Ξ must be known with certainty

• Results are inconsistent with each 
rationality or behavior
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Easy Form of Resolution

Make models look the same:
RO => SO: Let f(x,ξ)= v ¸ g(x,ξ) 8 ξ2 Ξ
minx2 X EP[f(x,ξ)] minx2 X EP[v|v¸ g(x,ξ)8ξ]      

minx2 X [maxξ2Ξ g(x,ξ)]
SO => RO: Let Ξ be the domain of P,  g(x,ξ)=> 

g(x, P)=EP[f(x,ξ)]
minx2 X [max P2Ξ g(x, P)] minx2 X EP[f(x,ξ)]
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What about Probabilistic 
Constraints?

• Prob./chance-constrained form:
minx2 X, P[h(x,ξ)· 0]¸ α f(x)

• RO Form:
P(Ξ)¸ α, g(x,ξ)=f(x)δ{ξ|h(x,ξ)· 0}

• SO Form: 
f(x,ξ)=f(x)δ{x| P[h(x,ξ)· 0]¸ α}
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What is the True Goal? 

• Maximize expected utility? 
f(x,ξ) = - U(x,ξ), P given

• A robust form? 
g(x,ξ) = U(x,ξ) and for ξ(x)=argmaxξ2Ξ g(x,ξ)
P(ξ(x))=1
Expected utility with P that depends on x

• Can this be rational? 
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Toward a Consistent View: 
Competition

• Suppose (a) competitor(s) choose(s) y(x,ξ) to 
maximize c(x,y,ξ)

• Formulation:
minx2 X EP[f(x,y,ξ)|y2 argmax c(x,y,ξ)]

• y fixed (or f independent of y) => SO
• y=ξ2 Ξ, f(x,y,ξ)=c(x,y,ξ)=g(x,ξ) => RO
• SO assumes irrelevant adversary  
• RO assumes perfect adversary
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Paradoxes and Pitfalls
• Value of Information: “Blau’s dilemma”
• Suppose demand=b=0 w.p. 0.9 and 1 w.p. 0.1
• Problem: 

min x s.t. P[x¸ b]¸ 0.9
Solution: x*=0

With perfect information: xP=0 w.p. 0.9 and 1 w.p. 0.1
EVPI = Exp. Value without Perfect Information – Exp. Value 

with Perfect Information 
= 0 – 0.1 = -0.1 < 0 

(Same may be true with EVSampleInformation)
For RO, let Ξ = {b | P[b]¸ 0.9} = {0}
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Problems with “Paradox”

• Utility may depend on information level
– With no information, 0.9 may be acceptable but 

not the same with more information
– Cannot may direct comparisons in information 

value
• Not including role of competitor

– Competitor may gain information as well
– In this case, more information may not always 

be beneficial
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Coherent and Rational Risk 
Measures

• R is a coherent risk measure if
– R is convex and decreasing
– R(x(ξ)+a)=R(x(ξ)) + a, a2 <
– R(λ x(ξ)) = λ R(x(ξ))

Von Neumann-Morganstern (rational) utility 
(negative risk):
Complete, Transitive, Continuous, Monotonic, 

Substitutable (Independent)
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Resolving Utility Problems

Role in RO model
R(x,Ξ) = Maxξ2Ξ g(x,ξ)
may not have all the properties (unless interpreted 

differently)
Examples: g(x,ξ)= ξT(x-b) , Ξ={ξ | ξT ξ · ε2}

Maxξ2Ξ g(x,ξ)=ε ||x-b||
Not coherent in x but ok in ||x-b|| 
g(x,ξ) = max{ξ2 Ξ | ξ · x}=min{ξmax,x}
Not coherent when min is ξmax but ok if x

Re-interpretation may be consistent with axioms
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Problems with Other Forms: Mean-
Variance

• Suppose objective is 
Mean(f(x)) + λVariance(f(x))

• vNM independence: 
Suppose E(x1)=-1, Var(x1)=1, E(x2)=-1.5, Var(x2)=0.25

R(x1)=0, R(x2)=-1.25=>x2 Â x1
Consider adding a to each with E(a)=0,Var(a)=α2, Cov(x1,a)=-α, 
Cov(x2,a)=0.5α; E(x1+a)+Var(x1+a)=-1+1-2α+α2

E(x2+a)+Var(x2+a)=-1.5+0.25+α+α2

R(x1)-R(x2)=-3α+1.25<0 if α > 1.25/3 => x1+a Â x2+a
• Two-stage problem

f(x,y,ξ) = c(x) + q(y(ξ))
Min of Mean(f) + λVariance(f) may

not be have f(x,y,ξ)=miny c(x) + q(y(x,ξ))
• Resolution: fix utility as quadratic (or other) 
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Do Axioms Matter?

• What is observed? (Kahnemann-Tversky
prospect theory)
– Targets define utility
– Preference depends on closeness to targets

Too  far 
away

Close to 
1st goal

Close to 
2nd goal

Satisfied

Traditional SO 
applies

Form for 
RO/Prob
constrained

Small 
prob.



© JRBirge Robust Optimization/Sandia – 31Aug2005 16

Converging Models

• Both RO and SO models can apply for 
observed preferences

• Interpretation of a competitor brings them 
together

• Paradoxes generally concern mis-
interpretations

• What about methods? 
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Convergent Methods

• Bounding methods for SO:
Find P* s.t. EP*[f(x,ξ)]· (¸) EP[f(x,ξ)]
Equivalent to Max(Min)P’2 P EP’[f(x,ξ)]

• Procedures:
– Generalized programming (subproblems to generate 

weights on ξ2 Ξ)
– Use of convexity properties
– Finite support (but often non-convex subproblems)

• Direct interpretation for RO: Interpret Ξ as P
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Combining: When to Use What?
• Risk-neutral expectation

– Repeated (often), Complete markets (after 
transformation) and discounting

– Distribution from fundamentals
• Traditional expected utility

– Can define function, incomplete market
• “Worst-case” robust or given probability

– Little information, only survivability counts
• Competition and distribution domains

– Allows consistent view from risk-neutral to “worst 
case”
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Conclusions
• Traditional stochastic optimization and 

robust optimization can be viewed in same 
framework

• Can model decision problems in either 
framework

• Problems when mis-interpreting one 
situation to the other

• View of competition and distributions 
allows broad perspective


